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Abstract

Nitric oxide (NO) and hydrogen peroxide (H2O2) play key roles in physiological and pathological responses in cardiac
myocytes. The mechanisms whereby H2O2–modulated phosphorylation pathways regulate the endothelial isoform of nitric
oxide synthase (eNOS) in these cells are incompletely understood. We show here that H2O2 treatment of adult mouse
cardiac myocytes leads to increases in intracellular Ca2+ ([Ca2+]i), and document that activity of the L-type Ca2+ channel is
necessary for the H2O2-promoted increase in sarcomere shortening and of [Ca2+]i. Using the chemical NO sensor Cu2(FL2E),
we discovered that the H2O2-promoted increase in cardiac myocyte NO synthesis requires activation of the L-type Ca2+

channel, as well as phosphorylation of the AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase
kinase 1/2 (MEK1/2). Moreover, H2O2-stimulated phosphorylations of eNOS, AMPK, MEK1/2, and ERK1/2 all depend on both
an increase in [Ca2+]i as well as the activation of protein kinase C (PKC). We also found that H2O2-promoted cardiac myocyte
eNOS translocation from peripheral membranes to internal sites is abrogated by the L-type Ca2+ channel blocker nifedipine.
We have previously shown that kinase Akt is also involved in H2O2-promoted eNOS phosphorylation. Here we present
evidence documenting that H2O2-promoted Akt phosphorylation is dependent on activation of the L-type Ca2+ channel, but
is independent of PKC. These studies establish key roles for Ca2+- and PKC-dependent signaling pathways in the modulation
of cardiac myocyte eNOS activation by H2O2.
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Introduction

The endothelial isoform of nitric oxide synthase (eNOS) is

robustly expressed in cardiac myocytes, and nitric oxide (NO) has

been shown to play key roles in modulating cardiac function

[1,2,3]. eNOS is a Ca2+/calmodulin-dependent enzyme that

undergoes phosphorylation on multiple residues in response to

extracellular stimuli, involving several protein kinases and

phosphoprotein phosphatases. We have recently shown that

hydrogen peroxide (H2O2) is a critical intracellular mediator that

modulates eNOS phosphorylation and enzyme activation in

cardiac myocytes [2]. However, the role of H2O2 in modulation

of cardiac myocyte Ca2+ metabolism is less well understood, and

there are major gaps in our understanding of the pathways

connecting H2O2–dependent phosphorylation pathways, intracel-

lular Ca2+ signaling, and eNOS activation.

Cardiac myocytes contain an astonishingly broad array of

protein kinases, several of which may be modulated by H2O2.

Some protein kinase C (PKC) isoforms are activated by H2O2, yet

little is known about the modulation of eNOS by PKC in the

heart. Other protein kinases expressed in cardiac myocytes that

have been implicated in eNOS regulation include ERK1/2,

MEK1/2, kinase Akt, AMPK, and the cyclic AMP-dependent

protein kinase (PKA). Since abnormalities in PKC-modulated

signaling pathways and alterations in intracellular Ca2+ metabo-

lism have been implicated in cardiomyopathy and heart failure

[4,5,6], we decided to explore the role of H2O2 in control of PKC

activation, intracellular Ca2+ pathways, and eNOS phosphoryla-

tion responses in cardiac myocytes. Here we provide data that

establish roles for Ca2+, PKC and PKA in modulating eNOS

phosphorylation in response to H2O2, and identify the key protein

kinase pathways that modulate H2O2–dependent NO synthesis in

cardiac myocytes.
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Results

The fluorescent Ca2+ indicator Fura-2 was used to measure

[Ca2+]i in electrically stimulated (1 Hz, 5–10 volts) cardiac

myocytes that had been freshly isolated from adult mice. We

found that H2O2 (25 mM) promotes an increase in [Ca2+]i,

measured as the ratio of F340/F380 (Figure 1A). We next treated

cardiac myocytes with nifedipine, an extensively characterized L-

type Ca2+ channel-blocking drug, to probe the role of L-type Ca2+

channels in the H2O2–stimulated responses observed in these cells.

As shown in Figure 1A, the H2O2-promoted increase in cell-

derived Fura-2 fluorescence is blocked by nifedipine. Similarly, the

H2O2-promoted increase in cardiac myocyte contractility is

abrogated by pre-treatment of the cells with nifedipine

(Figure 1B). We also performed experiments comparing H2O2-

and isoproterenol-promoted changes both in [Ca2+]i and cardiac

myocyte contractility. As shown in Figures 1C and 1D, the

magnitude of both the H2O2-promoted contractility and Ca2+

responses are ,70% of the responses seen following treatment

with the b-adrenergic agonist isoproterenol.

Figure 2 presents the results of experiments using the NO

chemical sensor Cu2(FL2E), which we previously used to explore

the agonist-modulated regulation of cardiac myocyte NO synthesis

[2]. H2O2-promoted NO synthesis is completely blocked by pre-

treatment of the cells with nifedipine (100 mM, 30 min; Figure 2A).

Nifedipine also abrogates the H2O2-promoted increase in eNOS

phosphorylation (Figure 2B). The intracellular Ca2+ chelator

BAPTA-AM blocks the H2O2-promoted increase in eNOS

phosphorylation (Figure 2C). We previously demonstrated that

H2O2 treatment of cardiac myocytes promotes reversible eNOS

translocation from peripheral to internal membranes and back [2].

Figure 2D shows that H2O2-promoted eNOS translocation is

completely blocked by nifedipine, without affecting the localization

of the scaffolding/regulatory protein caveolin-3. Under these

conditions, there is no change in total eNOS protein abundance in

these cells, nor is there any apoptosis or necrosis of these cells

(Figure S1A, F, and D).

We next investigated the H2O2–stimulated Ca2+–modulated

phosphorylation pathways regulating eNOS responses in these

cells. As shown in Figure 3A, nifedipine blocks the H2O2-

promoted increase in PKC phosphorylation. Because adult mouse

cardiac myocytes are not amenable to RNA interference

approaches, we used a series of protein kinase inhibitors to probe

the pathways connecting H2O2 with eNOS phosphorylation. We

found that the PKC inhibitor calphostin C blocks the increase in

eNOS and PKC phosphorylations promoted by H2O2 (Figure 3B).

We selected for analysis of eNOS phosphorylation the major band

at Mr 135 kDa, which is the same Mr as the band seen in the total

eNOS immunoblot. For PKC, the multiple bands seen may reflect

the fact that we are using a ‘‘pan-phospho-PKC’’ antibody that

picks up several different phospho-PKC isoforms; quantification of

phospho-PKC includes all bands migrating in the vicinity of

known PKC isoforms.

We previously found [2] that the H2O2 promoted increase in

eNOS phosphorylation depends on the AMP-activated protein

kinase (AMPK). Here we show that the AMPK inhibitor

Compound C blocks H2O2-induced cardiac myocyte NO

synthesis, measured with the NO chemical sensor Cu2(FL2E)

(Figure 4A). In order to investigate the role of L-type Ca2+ channel

on the H2O2-promoted increase in AMPK phosphorylation, we

analyzed immunoblots performed in cardiac myocyte lysates

prepared from cells incubated with nifedipine (100 mM, 30 min)

prior to H2O2 treatment (25 mM, 15 min) (Figure 4B). Nifedipine

abrogates both the increase in AMPK phosphorylation as well as

phosphorylation of the well-known AMPK substrate protein,

acetyl-CoA carboxylase (ACC). The intracellular Ca2+ chelator

BAPTA-AM also blocks H2O2–promoted AMPK and ACC

phosphorylation (Figure 4C). Importantly, the PKC inhibitor

calphostin C blocks H2O2–stimulated phosphorylation of AMPK

and ACC (Figure 4D). H2O2 also promotes phosphorylation of the

protein kinases MEK1/2 and ERK1/2 (Figure 5A) and of kinase

Akt [2]. Inhibitors of MEK, including the structurally distinct

kinase inhibitors PD98059 and ‘‘MEK1/2 inhibitor’’ block H2O2–

stimulated NO synthesis (Figure 5B), and also attenuate H2O2–

promoted phosphorylations of eNOS and ERK1/2 (Figures 5C

and 5D; Figure S1D and E). The MEK1/2 and ERK1/2

phosphorylation responses are abrogated by nifedipine, BAPTA,

or calphostin C (Figure 6).

The phosphorylation response of kinase Akt to H2O2 appears to

be differentially regulated: while H2O2–promoted Akt phosphor-

ylation is blocked by nifedipine and BAPTA (as found for eNOS,

AMPK, ERK1/2, and MEK1/2), calphostin C fails to attenuate

Akt phosphorylation (Figure 6C). In contrast, the H2O2–stimulat-

ed phosphorylation of these other kinases is blocked by calphostin

C (Figures 3B, 4D, and 6C). Moreover, H2O2–stimulated AMPK

and Akt phosphorylations are unaffected by MAP kinase pathway

inhibitors (Figure S1B and C). We next explored the role of PKA

by investigating the effects of H2O2 on the phosphorylation of the

protein VASP [1]. We probed immunoblots with phosphospecific

antibodies directed against VASP phosphoserine 157, the

Figure 1. H2O2 treatment increases Fura-2 fluorescence and cardiac myocyte contractility. Panel A shows the effects of hydrogen
peroxide (H2O2, 25 mM) on F340/F380 ratio in Fura-2 loaded adult mouse cardiac myocytes. Cells were loaded with Fura-2 AM (1 mM) for 20 minutes
prior to microscopic analysis. Intracellular Fura-2 fluorescence was measured using electrically stimulated preparations (1 Hz, 5–10 volts).
Representative tracings of Fura-2 ratio of cells treated with H2O2 or H2O2 in the presence of nifedipine are shown above, and pooled data are shown
below measuring the D Fura-2 ratio in which peak height is subtracted from basal; between 9 and 23 cells were analyzed under each condition. Panel
B shows representative sarcomere length traces of cardiac myocytes treated with hydrogen peroxide (H2O2, 25 mM) in the presence or absence of
nifedipine. Below is shown pooled data analyzing contractility as deflections from the baseline sarcomere shortening, which was measured as the
percentage of the baseline resting cell length following treatments as shown. Recordings were performed at room temperature and myocytes were
stimulated at 1 Hz, 5–10 volts. The results of pooled data were analyzed from three independent experiments involving 11–30 cells each that yielded
equivalent results. Panel C shows representative tracings of Fura-2 in cells treated with hydrogen peroxide (H2O2, 25 mM) or isoproterenol (ISO
0.1 mM) on F340/F380 ratio (upper panel); pooled data below show the D Fura-2 ratio (left panel), and intracellular calcium concentrations (right panel)
between 9 and 19 cells are analyzed under each condition. Panel D shows representative sarcomere length traces of cardiac myocyte treated with
hydrogen peroxide (H2O2, 25 mM) or isoproterenol (ISO 0.1 mM). Results of pooled data are below the representative tracings, and show the effects of
hydrogen peroxide (H2O2, 25 mM) or isoproterenol (ISO 0.1 mM) on sarcomere length and percentage of sarcomere shortening; between 9 and 22
cells were analyzed under each condition. *indicates p,0.05; **indicates p,0.01; and ***indicates p,0.001. Each data point represents the mean 6
S.E. analyzed by ANOVA.
doi:10.1371/journal.pone.0044627.g001
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preferred site for PKA-catalyzed VASP phosphorylation. As can

be seen in Figure 7A, H2O2 promotes VASP phosphorylation, and

the PKA inhibitor H89 completely blocks this phosphorylation

response. Importantly, H2O2-promoted eNOS phosphorylation at

ser1177 is blocked by this same PKA inhibitor (Figure 7A). Both

calcium ionophore A23187 and the PKC agonist phorbol 12-

myristate 13-acetate promote phosphorylation responses in these

cells (Figure 7B and C).

Discussion

These studies have used a combination of cellular imaging and

biochemical approaches to explore eNOS activation and phos-

phorylation pathways in isolated mouse cardiac myocytes treated

with H2O2. Several previous reports on the effects of ROS in

cardiac myocytes have studied higher H2O2 concentrations and

more prolonged treatments, which can lead to oxidative stress,

Ca2+ overload, and myocyte apoptosis or necrosis [7,8]. However,

it is unlikely that the short-term exposure to low concentrations of

H2O2 used in the present study cause cardiac myocyte membrane

damage (Figure S1F); instead, our findings suggest a physiological

role for H2O2 in the modulation of myocyte L-type Ca2+ channels.

We found that H2O2-promoted increases in eNOS phosphoryla-

tion, NO production, and changes in eNOS subcellular localiza-

tion in cardiac myocytes require L-type Ca2+ channel activity.

Several lines of evidence in this study implicate Ca2+- and PKC-

dependent signaling pathways as upstream determinants of H2O2-

modulated responses in cardiac myocytes. We found that H2O2

treatment leads to increases in [Ca2+]i in electrically stimulated

cardiac myocytes, associated with an increase in myocyte

contractility (Figure 1). These findings are in agreement with

previous reports [9,10]. Recent studies looking at H2O2-modulat-

ed calcium metabolism in cardiac myocytes have identified

SERCA and NCX as important targets for H2O2 in these cells

[11]. Our studies provide strong evidence for the involvement of

L-type Ca2+ channels in modulating cardiac myocyte responses to

H2O2.

Using the highly sensitive fluorescent probe Cu2(FL2E) to

visualize NO synthesis in cardiac myocytes, we demonstrated that

the L-type Ca2+ channel activity is required for H2O2-promoted

NO synthesis (Figure 2A). We have previously shown that H2O2

activates the endothelial isoform of NOS in cardiac myocytes [2].

eNOS is a phosphoprotein that undergoes phosphorylation on

multiple residues [12]. Here, we found that the increase in eNOS

phosphorylation at serine 1177 and 633 residues caused by H2O2

exposure of cardiac myocytes was blocked by nifedipine or

BAPTA-AM (Figure 2B and 2C). Because eNOS undergoes

intracellular translocation following H2O2 treatment [2], we

investigated the role of L-type Ca2+ channel on H2O2-promoted

changes in eNOS intracellular localization. Caveolin-3 is a marker

for the microdomains known as plasmalemmal caveolae. In

cardiac myocytes caveolin-3 is also a binding partner of eNOS

[13,14]. As shown in Figure 2D, the colocalization between eNOS

and caveolin-3 decreases 15 to 30 minutes after the addition of

H2O2; eNOS returns to peripheral membranes and starts to re-

localize with caveolin-3 ,60 minutes after the addition of H2O2.

Importantly, nifedipine abrogates H2O2-promoted eNOS translo-

cation. There is no change in eNOS abundance or cardiac

myocyte viability following treatment with H2O2 under these

conditions (Figure S1A). Taken all together, these findings reveal

that the H2O2-promoted increases in NO synthesis and eNOS

phosphorylation depend on L-type Ca2+ channel activity and are

associated with dynamic eNOS translocation.

Several protein kinases phosphorylate eNOS [12], including

PKC, which stimulates NO production in endothelial cells

associated with increased eNOS phosphorylation [15,16]. In

cultured cardiac myocytes, PKC isoforms regulate contractility

and hypertrophy [17]. Activation of classical PKC isoforms is

modulated by Ca2+ and diacylglycerol [18,19]. We found that

exposure to H2O2 leads to an increase in PKC phosphorylation,

and confirmed that blockade of the L-type Ca2+ channel by

nifedipine abrogates the phosphorylation response (Figure 3A).

Inhibition of PKC using calphostin C blocked H2O2-promoted

increase in eNOS phosphorylation (Figure 3B). These lines of

evidence point to a central role for Ca2+- and PKC-dependent

pathways in modulating H2O2-mediated eNOS activation, and

are consistent with our finding that H2O2-dependent NO synthesis

is blocked in cardiac myocytes treated with nifedipine.

The AMP-activated protein kinase (AMPK) is a serine/

threonine protein kinase that has been characterized as a sensor

of cellular energy balance in mammalian cells [20]. We and others

have previously reported that AMPK regulates eNOS in

endothelial cells [21,22]. Using the NO sensor Cu2(FL2E), we

demonstrate here that activation of AMPK is required for the

H2O2-promoted increase in cardiac myocyte NO synthesis

(Figure 4A). Similar to eNOS, H2O2-promoted AMPK activation

is Ca2+ and PKC dependent (Figure 4B, 4C and 4D). Nifedipine

treatment of cardiac myocytes not only abrogates the increase in

AMPK phosphorylation but also blocks phosphorylation of its

substrate ACC (Figure 4B). A23187 calcium ionophore and

phorbol 12-myristate 13-acetate treatments of cardiac myocytes

enhanced AMPK phosphorylation (Figures 7B and 7C). These

findings are consistent with previous observations in other

experimental systems suggesting that AMPK can be activated by

Ca2+/calmodulin [23]. In addition to AMPK, MEK1/2 appears

to be necessary for the H2O2-promoted increase in cardiac

Figure 2. Nifedipine effects on H2O2-promoted NO synthesis, eNOS phosphorylation, and eNOS translocation. In Panel A, mouse
cardiac myocytes were loaded with the NO chemical sensor Cu2(FL2E), and then treated with nifedipine (100 mM) or vehicle followed by hydrogen
peroxide (H2O2, 10 mM) treatment. Upper panel shows representative fluorescence images at 0, 2, and 5 minutes followed treatments as indicated.
Middle panel shows representative fluorescence tracings of single cells treated with H2O2 or H2O2 in the presence of nifedipine. Lower panel shows
the results of pooled data analyzed from at least three independent repetitions with a minimum of 4 cells analyzed per experiment that yielded
equivalent results; *indicates p,0.05. In Panel B, cardiac myocytes were incubated with nifedipine (100 mM, 30 min) or vehicle, then treated with
hydrogen peroxide (H2O2, 25 mM, 15 min) and analyzed in immunoblots probed with antibodies as shown. Panel C shows immunoblot analyses from
cardiac myocytes incubated with the intracellular calcium chelator BAPTA AM (60 mM, 30 min) or vehicle, then treated with H2O2 (25 mM, 15 min).
Below each representative immunoblot the results of densitometric analyses from pooled data are shown, documenting the changes in phospho-
eNOS1177 and phospho-eNOS633 plotted relative to the signals present in unstimulated cells. Each data point represents the mean 6 S.E. derived
from at least three independent experiments; *indicates p,0.05 (ANOVA). Panel D shows confocal microscopic images of cardiac myocytes treated
with nifedipine (100 mM, 30 min) or vehicle, then treated with H2O2 (10 mM) for the indicated times. The cells were fixed, permeabilized, and probed
with antibodies against total caveolin-3 (Alexa Fluor-Red 568) or eNOS (Alexa Fluor-Green 488); overlapping signals are shown in yellow. The bar
graph below shows pooled data from three experiments, quantitating the percent overlap between eNOS and caveolin-3 at different times after
adding H2O2. *indicates p,0.05 compared to t = 0.
doi:10.1371/journal.pone.0044627.g002
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myocyte NO synthesis and eNOS phosphorylation (Figure 5).

Although both AMPK and kinase Akt are known to directly

phosphorylate eNOS, the mechanisms whereby MEK1/2 and

ERK1/2 modulate eNOS phosphorylation and activation are less

clearly understood. Clearly, the modulation of cardiac myocyte

eNOS by H2O2 involves complex interactions implicating multiple

protein kinase pathways (Figure 8).

We have previously shown that both the PI3-K inhibitor

wortmannin and Akt inhibitor XI block H2O2-promoted eNOS

phosphorylation, and we also found that these inhibitors do not

attenuate H2O2-promoted AMPK phosphorylation [2]. On the

other hand, inhibition of AMPK by compound C reduces the

H2O2-promoted increase in Akt phosphorylation, suggesting that

AMPK may lie upstream of Akt in cardiac myocytes, as previously

shown in vascular endothelial cells [21]. The inhibition of H2O2-

promoted eNOS phosphorylation by the PKA inhibitor H89

(Figure 7A) implicates a role for PKA in modulating the response

to H2O2; this hypothesis is further supported by our finding that

H2O2 promotes VASP phosphorylation at a serine residue that is

preferentially targeted by PKA (Figure 7A). The current studies

have also explored whether changes in [Ca2+]i or PKC activity are

involved in the H2O2-promoted increase in cardiac myocyte Akt

phosphorylation. Nifedipine and BAPTA abrogate the H2O2-

promoted increase in Akt phosphorylation (Figure 6A and B).

These observations are consistent with previous reports in other

cell systems, which suggested that PI3-K/Akt can be activated by

intracellular Ca2+ fluxes in endothelial cells [24]. Importantly, the

H2O2-promoted increase in Akt phosphorylation is unaffected by

the PKC inhibitor calphostin C, indicating that signaling to Akt by

H2O2 does not involve PKC activation (Figure 6C).

The present studies define a critical role for L-type Ca2+

channel activity in the control of H2O2–dependent pathways that

lead to the phosphorylation of protein kinases regulating eNOS

signaling in cardiac myocytes. The physiological effects of low

H2O2 concentrations seen in these studies can be contrasted to the

much higher levels of oxidative stress that have been observed in

cardiac disease states, including heart failure and cardiomyopathy

[25,26,27]. A deeper understanding of the factors that modulate

H2O2 metabolism in cardiac myocytes is needed in order to devise

therapeutic strategies to regulate ROS balance in physiological

and pathophysiological states in the heart.

Figure 3. Effects of calphostin C on H2O2-promoted eNOS
phosphorylation. In panel A, cardiac myocytes were incubated with
nifedipine (100 mM, 30 min) or vehicle, then treated with H2O2 (25 mM)
and analyzed in immunoblots probed with phospho-protein kinase C
(PKC) phosphorylation (bII Ser660) or GAPDH antibodies. Panel B shows
a representative experiment looking at the effects of calphostin C on
H2O2-promoted eNOS phosphorylation. Freshly isolated adult murine
cardiac myocytes were treated with calphostin C (1 mM, 30 min) or
vehicle before treatment with H2O2 (25 mM, 15 min). Cell lysates were
resolved by SDS-PAGE and probed using antibodies directed against
phospho-eNOS Ser1177, phospho-eNOS Ser633, total eNOS, phospho-
PKC, or GAPDH. Densitometric analyses from pooled data, plotting the
fold increase of the degree of protein phosphorylation (in arbitrary
units) relative to the signals present in unstimulated cardiac myocytes
are also shown in this figure. Each data point represents the mean 6
S.E. derived from three independent experiments, *indicates p,0.05 for
respective phospho-protein versus unstimulated cells (ANOVA).
doi:10.1371/journal.pone.0044627.g003
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Materials and Methods

Materials
Polyclonal antibodies directed against phospho-eNOS

(Ser1177), phospho-PKC (pan) (bII Ser660), phospho-AMPK

(Thr172), phospho-Akt (Ser473), phospho-ACC (Ser79), phospho-

MEK1/2 (Ser217/212), phospho-ERK1/2 (Thr202/Tyr204),

AMPK, Akt, ACC, MEK1/2, ERK1/2, phospho-VASP

(Ser157), and H-89 were from Cell Signaling Technologies

(Beverly, MA). Antibodies against total eNOS, total VASP,

Caveolin-3, and phospho-eNOS (Ser633) were from BD Trans-

duction Laboratories (Lexington, KY). Collagenase type 2 was

from Worthington Biochemical (Lakewood, NJ). Compound C,

PD98059 (a selective cell-permeable inhibitor of MAP kinase

kinase [MEK]), ‘‘MEK1/2 inhibitor’’ (a cell-permeable vinylogous

cyanamide that acts as a selective inhibitor of MEK1/2), and

Calphostin C were from Calbiochem. Super Signal substrate for

chemiluminescence detection and secondary antibodies conjugat-

ed with horseradish peroxidase were from Pierce. Tris-buffered

saline and phosphate-buffered saline were from Boston Bioprod-

ucts (Ashland, MA). Laminin was from BD Bioscience (San Jose,

CA). Minimum essential medium with Hank’s balanced salt

solution and glutamine were from Gibco-BRL. Calf serum was

from HyClone (Logan, UT). The AlexaFluor488 Annexin V/

Dead cell apoptosis kit, Alexa Fluor-Green (488)-tagged goat anti-

rabbit antibody and Alexa Fluor red (568)-tagged goat anti-mouse

antibody were from Invitrogen/Molecular Probes. All other

reagents were from Sigma (Plymouth Meeting, PA). Mouse line

C57BL6/J was from Jackson Labs (Bar Harbor, ME). Cu2(FL2E)

was synthesized as previously reported [28].

Isolation of Adult Mouse Ventricular Myocytes
All animal experimentation was performed according to

protocols approved by the Harvard Medical School Committee

on Use of Animals in Research. For these studies, 8–10-week-old

C57BL6/J, mice were lightly anesthetized with isofluorane,

heparinized (50 U, ip), and sacrificed. The heart was quickly

removed from the chest and retrogradely perfused through the

aorta as described [29]. Cardiac myocyte isolation methods

followed the described procedures [29], with minor modifications

as previously reported [1]. In brief, enzymatic digestion was

initiated by adding collagenase type 2 to the cardiac perfusion

solution, followed by the stepwise introduction of CaCl2, after

which the heart tissue was minced and the cells were dispersed by

trituration. Subsequently, the cardiac myocytes were allowed to

settle, and then washed, pelleted, counted, and plated.

Cell Culture
Cardiac myocytes were plated in laminin-coated 6-well culture

dishes (50,000 rod-shaped cells per dish) in plating medium

consisting of Minimum Essential Medium with Hank’s balanced

salt solution, supplemented with calf serum (10% v/v), 2,3-

butanedione monoxime (10 mM), penicillin-streptomycin (100 U/

ml), glutamine (2 mM), and ATP (2 mM). After the cells were

attached (,1 hour), the plating medium was changed to culture

medium consisting of Minimum Essential Medium with Hank’s

balanced salt solution, supplemented with bovine serum albumin

(1 mg/ml), penicillin-streptomycin (100 U/ml), and glutamine

(2 mM) and the cells were cultured for 4 hours.

Measurements of Intracellular Ca2+ by Fura-2
Intracellular calcium concentrations were monitored using

electrically stimulated freshly isolated cardiac myocytes. In brief,

coverslips of cardiac myocytes loaded with Fura-2AM (1 mM,

20 min, room temperature) were used to monitor intracellular

calcium transients. Fura-2 fluorescence was measured using an

IonOptix spectrophotometer (HyperSwitch; IonOptix, Milton,

MA, USA). Fura-2 was excited by light at 340-nm and 380-nm. A

photomultiplier tube detected the emitted fluorescence at 510 nm.

Experiments were performed at room temperature on the stage of

an inverted microscope (Nikon, Tokyo, Japan), and myocytes were

visualized using an air objective (S Fluor 40X). Field stimulation

(5–10 V, 1 Hz) was accomplished using the MyoPacer (IonOptix).

In all experiments, myocytes were kept in Tyrode’s solution

(pH 7.45 with 1.0 mM CaCl2 added). A two-point Fura2

calibration was performed according to the method of Grynkie-

wicz et al. [30,31].

Myocyte Sarcomere Shortening
Myocytes were placed in a rapid change stimulation chamber

on an inverted Nikon microscope stage and continuously bathed in

Tyrode’s solution at room temperature, pH 7.45 with 1.0 mM

CaCl2 added. Myocytes were field-stimulated (MyoPacer Field

Stimulator, IonOptix, Milton, MA) at 1 Hz, 5–10 Volts.

Sarcomere length was recorded with a video edge detector

coupled to a camera (MyoCam-S, IonOptix). Sarcomere shorten-

ing analyses was performed using IonWizard Core Analysis

software (IonOptix) in myocytes without any treatment and after

5 to 10 min of H2O2. In some studies, myocytes were pre-treated

with nifedipine (100 mM) for at least 15 min before and during

H2O2 treatment. Sarcomere shortening was expressed as percent

shortening relative to the resting diastolic length.

Intracellular Nitric Oxide Imaging
Cardiac myocytes harvested from at least three independent

preparations were analyzed. The signal from the NO sensor was

Figure 4. Intersections of kinase pathways and [Ca2+]i in control of H2O2-promoted eNOS responses. In panel A, adult mouse cardiac
myocytes were loaded with the NO dye Cu2(FL2E), and then treated with the AMPK inhibitor Compound C (1 mM) or vehicle followed by hydrogen
peroxide (H2O2, 10 mM) treatment. Upper panel shows representative fluorescence images at 0, 2, and 5 minutes followed treatments as indicated.
Middle panel shows representative fluorescence tracings of a cell treated with H2O2 or H2O2 in the presence of compound C. Lower panel shows the
results of pooled data analyzed from at least three independent repetitions with a minimum of 4 cells analyzed per experiment that yielded
equivalent results; *indicates p,0.05. Panels B, C, and D show representative experiments analyzing the effects of nifedipine (100 mM), BAPTA AM,
(60 mM), or calphostin C (1 mM), on H2O2-promoted AMPK or ACC phosphorylation. Cardiac myocytes were pre-incubated with these compounds for
30 min, then treated with H2O2 (25 mM, 30 min) and analyzed in immunoblots probed with phospho-AMPK Thr172, phospho-ACC Ser79, AMPK, or
ACC antibodies, as shown. Each data point represents the mean 6 S.E. derived from at least three independent experiments; *indicates p,0.05
(ANOVA).
doi:10.1371/journal.pone.0044627.g004
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analyzed as the slope of the fluorescence increase observed

following the addition of agonist or vehicle. Cells were cultured on

cover slips and loaded with 5 mM Cu2(FL2E) [28] for 2 hours in

Tyrode’s solution at 37uC and 2% CO2. Cover slips were then

placed in an onstage incubator (Tokai, Tokyo, Japan) on an

Olympus IX81 inverted microscope equipped with an UPlan

40X/1.3 oil objective in a low-volume glass-covered recording

chamber. Fluorescence signals were analyzed by using a

Hamamatsu Orca CCD camera (Hamamatsu, Tokyo, Japan) at

470 nm. Viable rod-shaped cardiac myocytes with rectangular

ends were selected by differential interface contrast imaging and

then subjected to fluorescence imaging, following treatments as

indicated.

Immunoblot Analyses
After drug treatments, cardiac myocytes were washed with PBS

buffer and incubated for 10 minutes in lysis buffer (50 mM Tris-

HCl, pH 7.4; 150 mM NaCl; 1% Nonidet P-40; 0.25% sodium

deoxycholate; 1 mM EDTA; 2 mM Na3VO4; 1 mM NaF; 2 mg/

mL leupeptin; 2 mg/ml antipain; 2 mg/ml soybean trypsin

inhibitor; and 2 mg/mL lima trypsin inhibitor). Cells were

harvested by scraping. After separation by SDS-PAGE, proteins

were electroblotted onto nitrocellulose membranes. After incubat-

ing the membranes in 5% nonfat dry milk in Tris-buffered saline

with 0.1% (vol/vol) Tween 20 (TBST), membranes were

incubated overnight in TBST containing 5% bovine serum

albumin plus the specified primary antibody. After four washes

(10 min each) with TBST, the membranes were incubated for one

hour with a horseradish peroxidase-labeled goat anti-rabbit or

anti-mouse immunoglobulin secondary antibody in TBST con-

taining 1% milk. The membranes were washed four additional

times in TBST, then incubated with a chemiluminescent reagent

according to the manufacturer’s protocols (SuperSignal West

Femto), and digitally imaged in a chemiluminescence imaging

system (Alpha Innotech Corporation, San Leandro, CA). Quan-

titative analyses of the chemiluminescent signals were performed

using an AlphaEaseHFC software (Alpha Innotech, San Leandro,

CA). For quantitative analyses of immunoblot experiments, the

signal is normalized to the value obtained in the absence of added

drug.

Immunohistochemistry
Cardiac myocytes plated on 8-well-chamber slides (Thermo

Scientific) were fixed in 4% paraformaldehyde for 20 min, rinsed

twice with PBS, permeabilized in 0.1% Triton X-100 for 45 min,

and blocked with 10% goat serum overnight. Immunoreactive

eNOS and caveolin-3 were co-localized using confocal microsco-

py. After incubating with both primary antibodies (in blocking

solution at 4uC, overnight), samples were washed three times in

PBS for 10 min. The eNOS primary antibody was localized by

immunofluorescent detection with a secondary Alexa Fluor-Green

(488)-tagged goat anti-rabbit antibody (1:200 dilution, 1 h

incubation), and Cav-3 primary antibody was detected with a

secondary Alexa Fluor red (568)-tagged goat anti-mouse antibody

(1:200 dilution, 1 h incubation). Samples were washed three times

in PBS for 10 min to remove excess secondary antibody and then

mounted on slides using medium containing 4’,6-diamidino-2-

phenylindole as nuclear counter stain. Microscopic analysis of

samples was performed using an Olympus IX81 inverted

microscope in conjunction with a DSU spinning disk confocal

system equipped with a Hamamatsu Orca ER cooled-CCD

camera. Images were acquired using a 40X/1.3 differential

interference contrast oil immersion objective lens and analyzed

using Metamorph software from Universal Imaging, Inc. (Down-

ingtown, PA).

Measurement of Cell Viability and Apoptosis
Cardiac myocytes were plated on laminin-coated culture dishes

in Tyrode’s solution at room temperature, pH 7.45 with 1.0 mM

CaCl2 added. Cardiac myocytes were treated with varying

concentrations of H2O2 for 15 minutes. Cell viability was

determined by the ratio of rod-shaped to total cells. Apoptosis

and necrosis were detected using an AlexaFluor488 annexin V/

propidium iodide detection kit (Invitrogen/Molecular Probes).

Briefly, cardiac myocytes were incubated with annexin V and

propidium iodide for 10 minutes at room temperature. Dishes

were photographed under both phase-contrast and fluorescence

microcopy, and rod-shaped (viable), rounded (non-viable), and

total cells were counted. Apoptotic cardiac myocytes were defined

as annexin V-positive (green-stained cells) and necrotic myocytes

as annexin V plus propidium iodide-positive cells (green- and red-

stained cells).

Statistical Analysis
Mean values for individual experiments were expressed as

means 6 S.E. Statistical differences were assessed by ANOVA. A p

value of less than 0.05 was considered significant.

Figure 5. Effects of MAP kinase inhibitors on H2O2-promoted eNOS activation and phosphorylation. Panel A shows the results of
immunoblots analyzed in lysates prepared from adult murine cardiac myocytes treated with hydrogen peroxide (H2O2, 25 mM) for the indicated
times. Cell lysates were analyzed in immunoblots probed using antibodies directed against phospho-MEK (Ser217/221), phospho-ERK1/2 (Thr202/
Tyr204), total MEK, ERK, and GAPDH, as indicated. Below each immunoblot are the results of densitometric analyses from pooled data, showing the
fold increase in protein phosphorylations (in arbitrary units) in cardiac myocytes treated with H2O2 at the indicated times plotted relative to the
signals present in unstimulated cells. Each data point represents the mean 6 SE derived from three independent experiments. The results are
significant at the p,0.05 level. *indicates p,0.05 (ANOVA). Panel B adult mouse cardiac myocytes were loaded with the NO dye Cu2(FL2E), and then
treated with PD98059 (37.4 mM), MEK inhibitor (1 mM) or vehicle followed by hydrogen peroxide (H2O2, 10 mM) treatment. Upper panel shows
representative fluorescence images at 0, 2, 5, and 10 minutes followed treatments as indicated. Lower panel shows representative fluorescence
tracings of a cell treated with PBS (green line), H2O2 (red line), H2O2 in the presence of MEK1/2 inhibitor (purple line), or H2O2 in the presence of
PD98059 (blue line). The results shown are representative of three independent experiments that yielded equivalent results. In panel C, cardiac
myocytes were incubated with PD98059 (50 mM, 30 min) or vehicle, then treated with H2O2 (25 mM, 15 min) and analyzed in immunoblots probed
with antibodies as shown. Panel D shows immunoblot analyses from cardiac myocytes incubated with MEK inhibitor (1 mM, 30 min) or vehicle, then
treated with H2O2 (25 mM, 15 min). Below each representative immunoblot are shown the results of densitometric analyses from pooled data,
documenting the changes in phospho-eNOS (Ser1177) plotted relative to the signal present in unstimulated cells. Each data point represents the
mean 6 S.E. derived from at least three independent experiments; *indicates p,0.05 (ANOVA).
doi:10.1371/journal.pone.0044627.g005
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Figure 6. Pathways controlling H2O2-promoted phosphorylation of MEK/ERK 1/2 and Akt. In panel A, cardiac myocytes were incubated
with nifedipine (100 mM, 30 min) or vehicle, then treated with hydrogen peroxide (H2O2, 25 mM, 15 min) and analyzed in immunoblots probed with
antibodies as shown. Panel B shows immunoblot analyses from cardiac myocytes incubated with BAPTA AM (60 mM, 30 min) or vehicle, then treated
with H2O2. Panel C shows cardiac myocytes treated with calphostin C (1 mM, 30 min) prior treatment with H2O2. Below each representative
immunoblot are shown the results of densitometric analyses from pooled data, documenting the changes in phospho-MEK1/2 (Ser217/221),
phospho-ERK1/2 (Thr202/Tyr204) (left panels), and phospho-Akt Ser473 (right panels) plotted relative to the signal present in unstimulated cells. Each
data point represents the mean 6 S.E. derived from at least three independent experiments (n = 4 for nifedipine, 3 for BAPTA and 6 for Calphostin C);
*indicates p,0.05; **indicates p,0.01 (ANOVA).
doi:10.1371/journal.pone.0044627.g006

Figure 7. Effect of protein kinase A (PKA) inhibitor on H2O2-promoted eNOS phosphorylation. In panel A, cardiac myocytes were
incubated with H89 (1 mM, 30 min) or vehicle, then treated with H2O2 (25 mM, 15 min) and analyzed in immunoblots probed with antibodies as
shown. Below each representative immunoblot are shown the results of densitometric analyses from pooled data, documenting the changes in
phospho-eNOS (Ser1177), and phospho-VASP (Ser157) plotted relative to the signals present in unstimulated cells. Each data point represents the
mean 6 S.E. derived from at least three independent experiments; *indicates p,0.05 (ANOVA). Panel B shows representative immunoblots from
experiments documenting the effects of A23187 (40 mM, 5 min) on cardiac myocyte protein phosphorylation responses. Panel C shows the results of
immunoblots analyzed in lysates prepared from cells treated with phorbol 12-myristate 13-acetate (10 mM, 15 min). Cell lysates were analyzed in
immunoblots probed with antibodies as indicated. The immunoblot images shown are representative of three independent experiments that yielded
similar results. Below each immunoblot panel are the results of densitometric analyses from pooled data, showing the fold increase in protein
phosphorylation (in arbitrary units), *indicates p,0.05.
doi:10.1371/journal.pone.0044627.g007
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Supporting Information

Figure S1 In Panel A, cardiac myocytes were treated with

hydrogen peroxide (H2O2, 25 mM) and analyzed in immunoblots

probed with antibodies as shown. The immunoblots shown are

representative of three independent experiments that yielded

similar results. Panel B shows immunoblot analyses from cardiac

myocytes incubated with PD98959 (50 mM, 30 min) or vehicle,

then treated with H2O2 (25 mM, 15 min). Panel C shows

representative immunoblot analyses from cells incubated with

MEK1/2 inhibitor (1 mM, 30 min) or vehicle, then treated with

H2O2. The immunoblots in panel B and C were probed with

antibodies against phospho-Akt (Ser 473) or phospho-AMPK

(Ser172). Panels D and E show results of pooled data

corresponding to representative experiments shown in Figure 5

(panels C and D). In panel F, cardiac myocytes were treated with

vehicle, H2O2 (25 mM), or H2O2 (500 mM) for 15 min and stained

with annexin V and propidium iodide as described in the text. The

two fluorescence channels were obtained sequentially; overlaying

of the differential interference contrast image (DIC) and both

fluorescence channels (annexin V and propidium iodide) is shown.

Panel G shows the percentage of apoptotic (annexin V positive)

and necrotic (annexin V + propidium iodide positive) cardiac

myocytes. Panel H shows the percentage of viable (rod-shaped)

and nonviable (round) cardiac myocytes. *indicates p,0.05;

**indicates p,0.01; and ***indicates p,0.001 (ANOVA).

(TIF)
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